Friday, December 25, 2009

Rabbits on a High-Saturated Fat Diet Without Added Cholesterol

I just saw another study that supports my previous post Animal Models of Atherosclerosis: LDL. The hypothesis is that in the absence of excessive added dietary cholesterol, saturated fat does not influence LDL or atherosclerosis in animal models, relative to other fats (although omega-6 polyunsaturated oils do lower LDL in some animal models). This appears to be consistent with what we see in humans.

In this study, they fed four groups of rabbits different diets:
  1. Regular low-fat rabbit chow
  2. Regular low-fat rabbit chow plus 0.5 g cholesterol per day
  3. High-fat diet with 30% calories as coconut oil (saturated) and no added cholesterol
  4. High-fat diet with 30% calories as sunflower oil (polyunsaturated) and no added cholesterol
LDL at 6 months was the same in groups 1, 3 and 4, but was increased more than 20-fold in group 2. It's not the fat, it's the fact that they're overloading herbivores with dietary cholesterol!

Total cholesterol was also the same between all groups except the cholesterol-fed group. TBARS, a measure of lipid oxidation in the blood, was elevated in the cholesterol and sunflower oil groups but not in the chow or coconut groups. Oxidation of blood lipids is one of the major factors in atherosclerosis, the vascular disease that narrows arteries and increases the risk of having a heart attack. Serum vitamin C was lower in the cholesterol-fed groups but not the others.

This supports the idea that saturated fat does not inherently increase LDL, and in fact in most animals it does not. This appears to be the case in humans as well, where long-term trials have shown no difference in LDL between people eating more saturated fat and people eating less, on timescales of one year or more (some short trials show a modest LDL-raising effect, but even this appears to be due to an increase in particle size rather than particle number). Since these trials represent the average of many people, they may hide some individual variability: it may actually increase LDL in some people and decrease it in others.

Merry Christmas!

Tuesday, December 22, 2009

What's the Ideal Fasting Insulin Level?

Insulin is an important hormone. Its canonical function is to signal cells to absorb glucose from the bloodstream, but it has many other effects. Chronically elevated insulin is a marker of metabolic dysfunction, and typically accompanies high fat mass, poor glucose tolerance (prediabetes) and blood lipid abnormalities. Measuring insulin first thing in the morning, before eating a meal, reflects fasting insulin. High fasting insulin is a marker of metabolic problems and may contribute to some of them as well.

Elevated fasting insulin is a hallmark of the metabolic syndrome, the quintessential modern metabolic disorder that affects 24% of Americans (NHANES III). Dr. Lamarche and colleagues found that having an insulin level of 13 uIU/mL in Canada correlated with an 8-fold higher heart attack risk than a level of 9.3 uIU/mL (1; thanks to NephroPal for the reference). So right away, we can put our upper limit at 9.3 uIU/mL. The average insulin level in the U.S., according to the NHANES III survey, is 8.8 uIU/mL for men and 8.4 for women (2). Given the degree of metabolic dysfunction in this country, I think it's safe to say that the ideal level of fasting insulin is probably below 8.4 uIU/mL as well.

Let's dig deeper. What we really need is a healthy, non-industrial "negative control" group. Fortunately, Dr. Staffan Lindeberg and his team made detailed measurements of fasting insulin while they were visiting the isolated Melanesian island of Kitava (3). He compared his measurements to age-matched Swedish volunteers. In male and female Swedes, the average fasting insulin ranges from 4-11 uIU/mL, and increases with age. From age 60-74, the average insulin level is 7.3 uIU/mL.

In contrast, the range on Kitava is 3-6 uIU/mL, which does not increase with age. In the 60-74 age group, in both men and women, the average fasting insulin on Kitava is 3.5 uIU/mL. That's less than half the average level in Sweden and the U.S. Keep in mind that the Kitavans are lean and have an undetectable rate of heart attack and stroke.

Another example from the literature are the Shuar hunter-gatherers of the Amazon rainforest. Women in this group have an average fasting insulin concentration of 5.1 uIU/mL (4; no data was given for men).

I found a couple of studies from the early 1970s as well, indicating that African pygmies and San bushmen have rather high fasting insulin. Glucose tolerance was excellent in the pygmies and poor in the bushmen (5, 6, free full text). This may reflect differences in carbohydrate intake. San bushmen consume very little carbohydrate during certain seasons, and thus would likely have glucose intolerance during that period. There are three facts that make me doubt the insulin measurements in these older studies:
  1. It's hard to be sure that they didn't eat anything prior to the blood draw.
  2. From what I understand, insulin assays were variable and not standardized back then.
  3. In the San study, their fasting insulin was 1/3 lower than the Caucasian control group (10 vs. 15 uIU/mL). I doubt these active Caucasian researchers really had an average fasting insulin level of 15 uIU/mL. Both sets of measurements are probably too high.
Now you know the conflicting evidence, so you're free to be skeptical if you'd like.

We also have data from a controlled trial in healthy urban people eating a "paleolithic"-type diet. On a paleolithic diet designed to maintain body weight (calorie intake had to be increased substantially to prevent fat loss during the diet), fasting insulin dropped from an average of 7.2 to 2.9 uIU/mL in just 10 days. The variation in insulin level between individuals decreased 9-fold, and by the end, all participants were close to the average value of 2.9 uIU/mL. This shows that high fasting insulin is correctable in people who haven't yet been permanently damaged by the industrial diet and lifestyle. The study included men and women of European, African and Asian descent (7).

One final data point. My own fasting insulin, earlier this year, was 2.3 uIU/mL. I believe it reflects a good diet, regular exercise, sufficient sleep, a relatively healthy diet growing up, and the fact that I managed to come across the right information relatively young. It does not reflect: carbohydrate restriction, fat restriction, or saturated fat restriction. Neither does the low fasting insulin of healthy non-industrial cultures.

So what's the ideal fasting insulin level? My current feeling is that we can consider anything between 2 and 6 uIU/mL within our evolutionary template, although the lower half of that range may be preferable.

Monday, December 14, 2009

The Dirty Little Secret of the Diet-Heart Hypothesis

The diet-heart hypothesis is the idea that saturated fat, and in some versions cholesterol, raises blood cholesterol and contributes to the risk of having a heart attack. To test this hypothesis, scientists have been studying the relationship between saturated fat consumption and heart attack risk for more than half a century. To judge by the grave pronouncements of our most visible experts, you would think these studies had found an association between the two. It turns out, they haven't.

The fact is, the vast majority of high-quality observational studies have found no connection whatsoever between saturated fat consumption and heart attack risk. The scientific literature contains dozens of these studies, so let's narrow the field to prospective studies only, because they are considered the most reliable. In this study design, investigators find a group of initially healthy people, record information about them (in this case what they eat), and watch who gets sick over the years.

A Sampling of Unsupportive Studies

Here are references to ten high-impact prospective studies, spanning half a century, showing no association between saturated fat consumption and heart attack risk. Ignore the saturated-to-polyunsaturated ratios, Keys/Hegsted scores, etc. What we're concerned with is the straightforward question: do people who eat more saturated fat have more heart attacks? Many of these papers allow free access to the full text, so have a look for yourselves if you want:

A Longitudinal Study of Coronary Heart Disease. Circulation. 1963.

Diet and Heart: a Postscript. British Medical Journal. 1977. Saturated fat was unrelated to heart attack risk, but fiber was protective.

Dietary Intake and the Risk of Coronary Heart Disease in Japanese Men Living in Hawaii. American Journal of Clinical Nutrition. 1978.

Relationship of Dietary Intake to Subsequent Coronary Heart Disease Incidence: the Puerto Rico Heart Health Program. American Journal of Clinical Nutrition. 1980.

Diet, Serum Cholesterol, and Death From Coronary Heart Disease: The Western Electric Study. New England Journal of Medicine. 1981.

Diet and 20-year Mortality in Two Rural Population Groups of Middle-Aged Men in Italy. American Journal of Clinical Nutrition. 1989. Men who died of CHD ate significantly less saturated fat than men who didn't.

Diet and Incident Ischaemic Heart Disease: the Caerphilly Study. British Journal of Nutrition. 1993. They measured animal fat intake rather than saturated fat in this study.

Dietary Fat and Risk of Coronary Heart Disease in Men: Cohort Follow-up Study in the United States. British Medical Journal. 1996. This is the massive Physicians Health Study. Don't let the abstract fool you! Scroll down to table 2 and see for yourself that the association between saturated fat intake and heart attack risk disappears after adjustment for several factors including family history of heart attack, smoking and fiber intake. That's because, as in most modern studies, people who eat steak are also more likely to smoke, avoid vegetables, eat fast food, etc.

Dietary Fat Intake and the Risk of Coronary Heart Disease in Women. New England Journal of Medicine. 1997. From the massive Nurse's Health study. This one fooled me for a long time because the abstract is misleading. It claims that saturated fat was associated with heart attack risk. However, the association disappeared without a trace when they adjusted for monounsaturated and polyunsaturated fat intake. Have a look at table 3.

Dietary Fat Intake and Early Mortality Patterns-- Data from the Malmo Diet and Cancer Study. Journal of Internal Medicine. 2005.
I just listed 10 prospective studies published in top peer-reviewed journals that found no association between saturated fat and heart disease risk. This is less than half of the prospective studies that have come to the same conclusion, representing by far the majority of studies to date. If saturated fat is anywhere near as harmful as we're told, why are its effects essentially undetectable in the best studies we can muster?

Studies that Support the Diet-Heart Hypothesis

To be fair, there have been a few that have found an association between saturated fat consumption and heart attack risk. Here's a list of all four that I'm aware of, with comments:

Ten-year Incidence of Coronary Heart Disease in the Honolulu Heart Program: relationship to nutrient intake. American Journal of Epidemiology. 1984. "Men who developed coronary heart disease also had a higher mean intake of percentage of calories from protein, fat, saturated fatty acids, and polyunsaturated fatty acids than men who remained free of coronary heart disease." The difference in saturated fat intake between people who had heart attacks and those who didn't, although statistically significant, was minuscule.

Diet and 20-Year Mortality From Coronary Heart Disease: the Ireland-Boston Diet-Heart Study. New England Journal of Medicine. 1985. "Overall, these results tend to support the hypothesis that diet is related, albeit weakly, to the development of coronary heart disease."

Relationship Between Dietary Intake and Coronary Heart Disease Mortality: Lipid Research Clinics Prevalence Follow-up Study. Journal of Clinical Epidemiology. 1996. "...increasing percentages of energy intake as total fat (RR 1.04, 95% CI = 1.01 – 1.08), saturated fat (RR 1.11, CI = 1.04 – 1.18), and monounsaturated fat (RR 1.08, CI = 1.01 – 1.16) were significant risk factors for CHD mortality among 30 to 59 year olds... None of the dietary components were significantly associated with CHD mortality among those aged 60–79 years." Note that the associations were very small, also included monounsaturated fat (like in olive oil), and only applied to the age group with the lower risk of heart attack.

The Combination of High Fruit and Vegetable and Low Saturated Fat Intakes is More Protective Against Mortality in Aging Men than is Either Alone. Journal of Nutrition. 2005. Higher saturated fat intake was associated with a higher risk of heart attack; fiber was strongly protective.

The Review Papers

Over 25 high-quality studies conducted, and only 4 support the diet-heart hypothesis. If this substance is truly so fearsome, why don't people who eat more of it have more heart attacks? In case you're concerned that I'm cherry-picking studies that conform to my beliefs, here are links to review papers on the same data that have reached the same conclusion:

The Questionable Role of Saturated and Polyunsaturated Fatty Acids in Cardiovascular Disease. Journal of Clinical Epidemiology. 1998. Dr. Uffe Ravnskov challenges the diet-heart hypothesis simply by collecting all the relevant studies and summarizing their findings.

A Systematic Review of the Evidence Supporting a Causal Link Between Dietary Factors and Coronary Heart Disease. Archives of Internal Medicine. 2009. "Insufficient evidence (less than or equal to 2 criteria) of association is present for intake of supplementary vitamin E and ascorbic acid (vitamin C); saturated and polyunsaturated fatty acids; total fat; alpha-linolenic acid; meat; eggs; and milk" They analyzed prospective studies representing over 160,000 patients from 11 studies meeting their rigorous inclusion criteria, and found no association between saturated fat consumption and heart attack risk.

Where's the Disconnect?

The first part of the diet-heart hypothesis states that dietary saturated fat raises the cholesterol/LDL concentration of the blood. The second part states that increased blood cholesterol/LDL increases the risk of having a heart attack. What part of this is incorrect?

There's definitely an association between blood cholesterol/LDL level and heart attack risk in certain populations, including Americans. MRFIT, among other studies, showed this definitively, although the lowest risk of all-cause mortality was at an average level of cholesterol.

So we're left with the first premise: that saturated fat increases blood cholesterol/LDL. This may be  a short-term effect, and it isn't necessarily true in animal models of heart disease if you exclude those that use large doses of dietary cholesterol. In the 1950s, Dr. Ancel Keys created a formula designed to predict changes in blood cholesterol based on the consumption of dietary saturated and polyunsaturated fats. However, it has shown limited predictive value in long-term diet modification trials such as MRFIT and the Women's Health Initiative.


Wednesday, December 2, 2009

Malocclusion: Disease of Civilization, Part IX

A Summary

For those who didn't want to wade through the entire nerd safari, I offer a simple summary.

Our ancestors had straight teeth, and their wisdom teeth came in without any problem. The same continues to be true of a few non-industrial cultures today, but it's becoming rare. Wild animals also rarely suffer from orthodontic problems.

Today, the majority of people in the US and other affluent nations have some type of malocclusion, whether it's crooked teeth, overbite, open bite or a number of other possibilities.

There are three main factors that I believe contribute to malocclusion in modern societies:
  1. Maternal nutrition during the first trimester of pregnancy. Vitamin K2, found in organs, pastured dairy and eggs, is particularly important. We may also make small amounts from the K1 found in green vegetables.
  2. Sucking habits from birth to age four. Breast feeding protects against malocclusion. Bottle feeding, pacifiers and finger sucking probably increase the risk of malocclusion. Cup feeding and orthodontic pacifiers are probably acceptable alternatives.
  3. Food toughness. The jaws probably require stress from tough food to develop correctly. This can contribute to the widening of the dental arch until roughly age 17. Beef jerky, raw vegetables, raw fruit, tough cuts of meat and nuts are all good ways to exercise the jaws.
And now, an example from the dental literature to motivate you. In 1976, Dr. H. L. Eirew published an interesting paper in the British Dental Journal. He took two 12-year old identical twins, with identical class I malocclusions (crowded incisors), and gave them two different orthodontic treatments. Here's a picture of both girls before the treatment:


In one, he made more space in her jaws by extracting teeth. In the other, he put in an apparatus that broadened her dental arch, which roughly mimics the natural process of arch growth during childhood and adolescence. This had profound effects on the girls' subsequent occlusion and facial structure:

The girl on the left had teeth extracted, while the girl on the right had her arch broadened. Under ideal circumstances, this is what should happen naturally during development. Notice any differences?

Thanks to the Weston A Price foundation's recent newsletter for the study reference.